Advanees in Computer Methods for Partial Differential Equations VI

. Vichnevetsky, D, Knight and G, Richter (Editors)
992 IMACS. All rights reserved.

PSEUDOSPECTRAL METHODS FOR THE BENJAMIN-ONO EQUATION

K.L. James and J.A.C. Weideman
College of Oceanography / Department of Mathematics
Oregon State University
Corvallis OR 97331, USA
e-mail: rodney@oce.orst.edu [ weideman@math.orst.edu

Abstract. We propose two pseudospectral methods for solving the Benjamin-Ono equation, One is based
an Fourier series, the other on rational functions. We discuss various issues such as the implementation of
these methods and their conservation properties, and we compare them numerically.

1. Introduction. The Benjamin-One (BO) equation models internal waves in stratified fuids (see (2], [8]).

s defined by
up 4 uuy + H{uz) =0, —c0<z<ox, (1)

together with mitial and boundary conditions given as
u{r,0) = ug(z), and w,u, —0 as |z|— co.

The third term in {1) involves the Hilbert transform, defined as the principal value integral

e =2 [~ S g, (2)

The BO equation is closely related to the more famous Korteweg-de Vries (KdV) equation, in which tg,.
replaces the Hilbert transform term in (1). As discussed in [1], for example, both equations may be viewed
as infinite dimensional integrable Hamiltonian systems, with an infinite number of constants of mation: For
{1), three of these constants are given by

I1=/:D;udz. fg=£:u2dx, and f3=j;:{u3—~3u:?'f{u}]dx; (3)

the third one being the Hamiltonian. Mereover, both the BO and KdV equations are solvable by the method
of inverse scattering and both admit soliton solutions. One major distinction between them is that KdV
solitons have the profile of a hyperbolic secant function whereas BO solitons are rational functions in = and
t. For example, one- and two-soliton solutions of (1) are given respectively by

Ar 20 ({:19? + E]E% -+ [Cl -+ G}}a 61_113;1 {{.‘1 - Cg}l_i)

e and u(z,1) = 7 7!
o —et)?+1 ' [ﬂ}ﬂgglﬂi - |:(:1 + Cj;l: {Cl — Cz}_i) =+ {Elﬂl + Cqﬂg}"

(4]

ulaz, i) =

where ) =1 — 1t — oy, 02 = 7 — 2t — ¢, and ¢, ¢1, €3, $1, ¢2 are arbitrary constants (see [9]).

Despite the fact that closed form solutions like these may be generated by analytical means, finding the
solution for arbitrary initial data wg(z) is no easy task. Numerical methods are therefore important for
studying the dynamics of (1). In this paper we propose two such methods.

Solving (1) numerically poses several challenges. First, one needs a method for dealing with the singular
integral (2). Second, the fact that BO solutions are rational functions is troublesome for the following reason.
Assuming the solution is negligible for |z| sufficiently large, the infinite domain is generally truncated to a finite
one for computational work. But since rational solutions decay slowly as |z] — oo, a very wide computational
domain is required. For this reason BO computations are more challenging than KdV computations, in which
the hyperbolic secant solitons decay rapidly as |z] — oo.
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When deciding on appropriate methods for solving PDEs, ons is invariably confronted with the choice
between finite difference, finite element, and spectral methods. For the BO equation we opted for spectral
methods, for the following reasons. First, in [10] it was shown that spectral methods for the KdV equation
are reliable, Second, the main advantage of finite difference and finite element methods is that they are local,
leading to sparse matrices and in general a less expensive computation than with spectral methods, However,
for (1) the integral term is global anyway, so this advantage of finite differences and elements is lost. Third,
it is not clear how to treat the Hilbert transform with finite differences or finite elements. By contrast both
of our methods deal naturally with the Hilbert transform; see (7) and (14) below.

2. A TFourier method. A Fourier based spectral-iterative method for (1) was proposed in [7]. Here we
introduce a related but not equivalent method. It is based on the method-of-lines strategy, in which we first
discretize the space variable in (1), leaving a semi-discrete system of ODEs to be integrated in Lime.

Suppressing the time dependence for now, we assume that u(z) is negligible for |z| > L. We truncate the
infinite line to = € [—L, L], and introduce the uniform grid

zj=gh; h=LIN, F=<=NMN.oMN.

Next we expand the data u; = u(z;) as a discrete Fourier series

N1 _ 1 N=1
T-'lj = E UHE“JHI’. Whﬂfﬂ' Ay = W
naz— M BT g

uje™ " and u, =nr/l. (3)

This leads to approximation formulas for u'(z;), u”(z;), and H{u"}(z;):

N-1 N1 N1
wi=1 3. paane® wf=— 3 plage™® and H{u"};=—i ) sga(n)ple.e™n (6)
n==M5N41 n=—0N n=—N+1
The third approximation is motivated by the well-known fact that
H{e™ ) = isgn(p) €™, p real. (7)

Note that in the first and third formulas in (6) we set a_y = 0. This prevents the introduction of a spurious
irnaginary component for real data, as discussed in [3] for example.
It is convenient to present the above formulas in matrix notation. If we define

u= [u_,-.,-,.“,uh-_lj"r and a= {ﬂ_.\'f---fﬂN-‘lJT:

then (5) may be summarized as
u=F"'ta and a=Fu,

where F is the Fourier matrix, and F-1 its inverse, with entries

1 : : ,
Fos=gge ™™, Fpl=c=s, _N<nj<N-1 (8)

The malrices representing the first and second derivatives and the Hilbert transform in Fourier space are
given by

*

£ = idiag(0, p_mar,-o ey )y, &= —diag(ply, ... ph_y), and &y = idiag(0,-1,...,-1,0,1,...,1)
(9]

Formulas (6) may therefore be summarized as
u'=F 18 Fu, u'=F'5Fu, and h=Fl1g4EFu
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The entries of the matrix F-'£;,F can be found in closed form in [3], and those of F~'E£4E;F were obtained
in [6]. In practice the matrices are not formed explicitly however. Instead the Fast Fourier Transform (FFT)

is used to compute the matrix-vector products invelving F and F~! efficiently.
Defining & = diag(u_n,...,un-1), and O as the zero vector, the semi-discrete version of (1} now becomes
du du

=5 4 UF & Fu+ F ey Fu =0, summarized as o

Naturally we would like our scheme to capture the dynamics of (1) accurately. One question in this
direction is whether (10) succeeds in conserving the integrals (3). To investigate this, consider

N-1 N=-]
L= Y uw, h=7} u

n=—N n=-N

+f(u) = 0. (10)

which are the discrete analogs of the first two integrals in (3). At this point we refer to [3, Sect. 4.5, where
the conservalion properties of Fourier semi-discretizations of u +uu; = 0 are discussed. It is straightforward
to include the term H{u..} in the analysis, the important property being the fact that the matrix F=' &y £,F
in (10) is skew-symmetric. Thus we deduce that dl; /dt = 0 but in general dl3/dt # 0. In order lo achieve
exact conservation of the second quantity the scheme (10) needs to be modified—the nonlinear term has
to be treated as uu, = fuu, + 3{u?):. The corresponding semi-discretization requires one extra FF'T per
eviluation as compared with (10), and it sacrifices exact conservation of the first quantity. It is possible to
have both /, and I, conserved at the same time, but then a Galerkin or full spectral method (as opposed
to pseudospectral as in (10)) should be used. But that introduces complications such as convolulion sums
which are expensive to deal with. For further discussion of these issues, including the distinction between
spectral and pseudospectral, we refer to [3].

As for the Hamiltonian, I3 in (3), it is not clear whether (10) can be mocified to achieve exacl conservalion
of this quantity. As will be discussed in Sect. 4, however, the discretization (10) conserves all three quantities
in {3) remarkably well in practice. Thus we settled on (10) as our basic Fourier semi-discretization.

It remains to pick a method for integrating (10). Many candidates are available, but the leapfrog method

u™F e g™ aarf(u™); m=1200m (11)

seems 1o do well for nonlinear dispersive problems such as these. We start it with the explicit midpeint rule
1 .
utt=n— 5 At f(u?), u'=u’- Atf(u?).

The main drawback of the Fourier method described here is the following. When truncating the infinite
domain to the finite interval [=L, L], a Fourier series introduces artificial periodicity. If the function u(z)
and its derivatives do not match precisely at the boundaries = = £, a discontinuity is introduced. When
this occurs the Fourier method is not as accurate as it normally is for smooth functions on a truly periodic
domain. In the present problem we are dealing with solutions that decay as |z] — 29, 50 one could reduce
the effect of the boundary discontinuity by choosing L sufficiently large. However, this means fewer points in
the interior of the domain and resolution is lost. We propose to overcome this difficulty using an expansion
in rational functions, which should be better suited for solutions such as (4).

3. A rational method. Consider the rational expansion

u(z, )= 3 aa(t)dalz), where ¢""iﬂ:"tiﬂ+$:i' (12)

T =00

L is a {ree parameter, to be chosen to optimize accuracy. The functions ¢,(z) are complete and erthogonal
in the space Ly{—oc,o0) (see [4]). The orthogonality property is

f dnl2)dmlz)” d:::{ E‘”‘ FEI o 5[“ u(z)ér (2) dz, (13)

i n # m, T J-
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where + denotes the complex conjugate. Our method is based on truncated versions of the above formulas,
Spectral methods based on (12) and (13) for solving stationary problems are described in [4], [5] and [11].
We suspect the present paper describes the first application to an evolution equation.
As partial motivation for this approach, note the following. The initial condition corresponding to the
one-soliton solution in (4) can be represented by only two terms, namely

de
—_— = 2dlz)+2d_i(2),
P gol(z) +2d_4(z)
provided we pick L = 1/c. By contrast, it requires many Fourier modes to approximate this [unction

accurately on a truncated domain.
We start with the computation of the Hilbert transform. It is shown in [12] that

H{¢n}(z) = iSgn(n) dn(z), (14)

where we use “Sgn" to indicate that Sgn(0) = 1; normally sgn(0) = 0.
Far computing derivatives we need Lo relate the coefficients in the formula

OO

S and®iz) = 3 a®gu(z), for k=1,2. (15)

A= - = =00

Direct differentiation of ¢,(x), and using the identity én(z) + dn_i(z) = 2L(L + ix)" (L — iz, yields

n[”: Etzlnﬂ“_|+{2n+1}a“+[n+1}ﬂ”+ll' [lﬁ}

n

al?) = —41? [n(u = 1)ap-g + 4ntaq_y + (6n* + 6n + 2)a, + 4(n + 1)?anqs + (n+ 2)(n + l]u,.ﬂJ 1T

In practice we truncate (12) to =N < n < N —; this means setting a, = 0 whenevern < —Norn> N-1
in {16) and (17). Thus we summarize

a = Cia, a® =(Cya, where a= (@_pyen. ,aN_l}T.

The matrix €y is skew-hermitian and tridiagonal, and C; is hermitian and pentadiagonal. They are the
first and second derivative analogues of £ and & in (9). Further properties of C; and C3, including their
eigenvalues, are given in [11]. Similarly, from (14) we conclude that the Hilbert transform analog of & in
() is
Cy =idiag{-1,...,-1,1,...,1).
The remaining question is the computation of the expansion coefficients ay, in terms of the function values

and vice versa. This can be done efficiently with the FFT if one exploits the fact that (12) is essentially a
transformed Fourier series. To see this, define § through

; Liq 1
P TIT or z=Ltan—-8, —-v<f# <,
L—iz 2 -7

and introduce the uniform grid
6, =jh, h=x/N, j==N.i., N

This translates into the non-uniform grid in the original variable: z; = Lian8;, Note that z = too
is included as a grid-point where we set the function to zero; no domain truncation is required with this
approach. On this grid, the finite version of (12), namely

N-1 N-1
u(e) = 3 a.a(z), becomes u;(L—iz;)= Y a,e™. {15]
n=—MN o=l
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This formula can be evaluated and inverted with the FFT, summarized as
u=P'Fla, and a= FPu.
‘The Fourier matrices F, 7~ are defined in (8), with nf; replacing p.z;. The weighting matrix is defined by
P =diag(L —tz_p,.. L —1zno)-

It has the undefined quantity L + 10c in its first position, but when P multiplies u the first entry is set fo
zero due to the boundary condition u — 0 as |z| — cc.
The above formulas may now be used to define the approximations to u'(z;), u"(z;), and H{u"}z;):

u =P VFI0FPu, v =PV FICFPy, and h = P FICHE, FPu.

Note that with this method we do not set a_y = 0 in any of the formulas, as we did in the Fourier case, In
the series (18) all terms appear as conjugate pairs; no spurious imaginary component will be introduced for
real dati,

Defining again U = diag(u_n,...,unx-1), the rational semi-discretization of (1) now reads

‘L—l: +UPVF'CFPu+ P FCyCaFPu =0, (19)
which we integrate with the leapfrog method (11). Although formidable at first sight, (s discretizalion
is only marginally more expensive than the corresponding Fourier discretization (10). The added expense
comes from carrying along the weighting matrix P, and the fact that the differentiation matrices C; and Cy
in (19) are banded whereas £ and &; in (10) are diagonal. In computing both (10) and (19), the bulk of the
work consists of the two FFTs.

4. Numerical Experiments. We now compare the methods (10) and (19). As a first test, we consider
simulating the one-soliton solution (4) with speed ¢ = 1/5 (a rather arbitrary choice.) The initial condition
for the numerical schemes is picked from the exact solution. As for choosing the parameter L, we decided
to pick it optimally for the initial condition, realizing that it will become non-optimal as soon as the soliton
IMOVES.

For the rational method we pick L = 1/¢ = 5 as discussed below (13). For the Fourier method it is not
so easy to determine the optimal L. We did it numerically by minimizing the residual {truncation error) at
t =0in (10). For N = 64 we thus settled on L = 100.

Fig. 1 shows the results of this simulation. In the first picture the errors (defined as the maximum absolute
error at the gridpoints) are shown as a function of time. In the second and third pictures the actual soliton
is shown as it moves to the right. Initially the rational method is about six orders of magnitude better than
the Fourier method. However, around (z,t) = (10,30) the error in the rational method starts increasing
rapidly, and soon after that the numerical soliton loses its coherence. These effects may be attributed to the
non-uniform grid z; = Ltan 1#;. Near the origin the grid spacing is roughly A = 0.12, which increases to
h = 0.64 near z = 10, and then unboundedly as z — oo. The Fourier method, although not dramatically
accurate, manages a useful approximation for a much longer period of time. In fact, the true solution is
superimposed as a dot-dash curve in Fig. 1 (b) and (c), but it is hardly visible in the Fourier picture. Only
much later, when the influence of the right hand beundary becomes a factor, does the Fourier solution break
down.

One can improve the performance of the rational method by increasing the value of L, thereby sacrificing
accuracy initially in exchange for improved results over a longer period of time. Or one could try and devise
methads for moving the grid and/or adapting [ dynamically. We will not pursue this further, however.
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Figure 1. One-soliton simulation as described in the text. Here ¢ = 0.2, At = 0.001, ¥ = 64, and L = 100,
L =5 for the Fourier and rational methods, respectively.

Gk t=0 1 5l t=90 14l £=180 4 ;
1+ 1 1F k 1 1r \ } 1
0 0 : i} U

=0 0 50 -50 0 50 .50 0 50
Figure 2. Two-soliton Fourier simulation as described in the text. Herec; = 0.3, ¢ = 0.6, ¢, = =30, ¢z = —55,

At = 0.001, N =128, L =100.
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Having established that the Fourier method is more robust in long-time calculations, we disregard the
-ational method for the more challenging two-soliton collision shown in Fig. 2. Again we superimposed the
true solution, but this is invisible, The success of the simulation is evident. The solitons appear unscathed
from the collision, as they should. Also, as observed in [9], they do not undergo a phase shift during collision,
as do solitons of KdV type. A mild oscillation can be observed in the ¢ = 130 picture, this being due to the
presence of the artificial boundary on the right. It can be removed by increasing IV, with a corresponding
increase in L.

We also computed the trapezoidal rule approximations of the invariant integrals in (3) at various time
levels. These quantities are conserved to a remarkable degree—over the interval t € [0, 180] the values of [y,
Iy, and Iy did not change by more than 6 x 10-**, 2 x 10~!, and 3 x 10~° percent, reapectively. Considering
Uhat the caleulation involved 1.8 10° time steps, these results reflect well on the ability of the Fourier method
Lo capture the significant dynamics of the BO equation in a stable manner.

In summary, we have proposed two spectral methods for the BO equation. Although we have stopped
short of proving convergence of the methods and deriving error bounds, numerical experiments confirm thal
bolh methods are useful and worth studying further. The rational method is capable of spectacular accuracy,
provided the solution does not wander too far from the origin. In long time calculations, however, the Fourier
method is decidedly superior,
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